Engineering shadows to fabricate optical metasurfaces.

نویسندگان

  • Alex Nemiroski
  • Mathieu Gonidec
  • Jerome M Fox
  • Philip Jean-Remy
  • Evan Turnage
  • George M Whitesides
چکیده

Optical metasurfaces-patterned arrays of plasmonic nanoantennas that enable the precise manipulation of light-matter interactions-are emerging as critical components in many nanophotonic materials, including planar metamaterials, chemical and biological sensors, and photovoltaics. The development of these materials has been slowed by the difficulty of efficiently fabricating patterns with the required combinations of intricate nanoscale structure, high areal density, and/or heterogeneous composition. One convenient strategy that enables parallel fabrication of periodic nanopatterns uses self-assembled colloidal monolayers as shadow masks; this method has, however, not been extended beyond a small set of simple patterns and, thus, has remained incompatible with the broad design requirements of metasurfaces. This paper demonstrates a technique-shadow-sphere lithography (SSL)-that uses sequential deposition from multiple angles through plasma-etched microspheres to expand the variety and complexity of structures accessible by colloidal masks. SSL harnesses the entire, relatively unexplored, space of shadow-derived shapes and-with custom software to guide multiangled deposition-contains sufficient degrees of freedom to (i) design and fabricate a wide variety of metasurfaces that incorporate complex structures with small feature sizes and multiple materials and (ii) generate, in parallel, thousands of variations of structures for high-throughput screening of new patterns that may yield unexpected optical spectra. This generalized approach to engineering shadows of spheres provides a new strategy for efficient prototyping and discovery of periodic metasurfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface.

Conventional plasmonic materials, namely noble metals, hamper the realization of practical plasmonic devices due to their intrinsic limitations, such as lack of capabilities to tune in real-time their optical properties, failure to assimilate with CMOS-standards, and severe degradation at elevated temperatures. Transparent conducting oxides (TCOs) is a promising alternative as plasmonic materia...

متن کامل

Tunable multiband metasurfaces by moiré nanosphere lithography.

Moiré nanosphere lithography (MNSL), which features the relative in-plane rotation between two layers of self-assembled monodisperse nanospheres as masks, provides a cost-effective approach for creating moiré patterns on generic substrates. In this work, we experimentally and numerically investigate a series of moiré metasurfaces by MNSL. Due to the variety of gradient plasmonic nanostructures ...

متن کامل

Planar immersion lens with metasurfaces

The solid immersion lens is a powerful optical tool that allows light entering material from air or vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, they rely on semispherical topographies and are non-planar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, ref...

متن کامل

Optical metasurfaces: from planar to conformable optics

Abrupt modifications of the fields across an interface can be engineered by depositing an array of subwavelength resonators specifically tailored to address local amplitude, phase and polarization changes [1]. Physically, ultrathin nanostructure arrays, called “metasurfaces”, control light by engineering artificial boundary conditions of Maxwell’s equations. Metasurfaces have been implemented t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2014